JR3 Multi-Axis Force-Torque Sensor Technical Specifications

Sensor Model: Mechanical Load Rating:	75E20S4 650 lb	75E20S4 1300 lb
Diameter (in)	7.50	7.50
Thickness (in)	2.00	2.00
Material	15-5PH SS	15-5PH SS
Weight (lb)	15.0	15.0
Nominal Accuracy, all axes (% measuring range)	±0.25	±0.25
Operating Temp. Range, non-condensing (°F)	-40 to +150	-40 to +150
F _x , F _y		
Standard Measurement Range (lb)	±650	±1300
Digital Resolution (Ib)	0.081	0.16
Stiffness (Ib/in)	0.98e6	1.6e6
Single-axis Overload (lb)	4150	7600
Multi-axis Overload Coefficient, a (lb)	4450	7850
Multi-axis Overload Coefficient, b (lb)	4150	7600
Fz		
Standard Measurement Range (lb)	±1300	±2600
Digital Resolution (b)	0.16	0.32
Stiffness (lb/in)	7.61e6	12.0e6
Single-axis Overload (lb)	12,500	24,100
Multi-axis Overload Coefficient, c (lb)	12,500	24,100
M _x , M _y		
Standard Measurement Range (in-lb)	±5000	±9800
Digital Resolution (in-lb)	0.63	1.23
Stiffness (in-lb/rad)	38.2e6	64.4e6
Single-axis Overload (in-lb)	19,900	39,500
Multi-axis Overload Coefficient, d (in-lb)	19,900	39,500
Mz		
Standard Measurement Range (in-lb)	±5000	±9800
Digital Resolution (in-lb)	0.63	1.23
Stiffness (in-lb/rad)	11.9e6	21.6e6
Single-axis Overload (in-lb)	17,000	32,300
Multi-axis Overload Coefficient, e (in-lb)	17,000	32,300

Standard Measurement Range

 This is the range of loads that each sensor model is ideally suited to measure. Factory adjustments to internal or external electronics allow custom measurement ranges to meet application-specific needs.

Bolt Patterns

- The 75E20S4 sensors are available standard with English or metric bolt patterns.
- Customer-specified bolt patterns are possible at additional cost.

Multi-axis Overloads

 Insert your estimated applied loads and the coefficients from the above table into the equations below to determine safe loading:

 $F_x/a + F_y/b + F_z/c + M_x/d + M_z/e \leq 1$ and

$$F_x/b + F_y/a + F_z/c + M_y/d + M_z/e \le 1$$

Both equations must be satisfied to avoid damage.

 If additional overload capability is desired we recommend using a higher-rated sensor with its measuring ranges electronically lowered.